Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaquabis(methanol)cobalt(II)]-µ-phthalato]

Cheng-Qi Liu,^a Xin-Tao Yang,^a Li-Li An,^a Rong Li^a and Jing-Min Shi^b*

^aDepartment of Chemistry, Xinzhou Teachers' University, Shanxi Xinzhou 034000, People's Republic of China, and ^bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China Correspondence e-mail: shijingmin@beelink.com

Received 27 July 2007; accepted 6 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.076; wR factor = 0.133; data-to-parameter ratio = 12.2.

In the crystal structure of the polymeric title compound, $[Co(\mu-C_8H_4O_4)(CH_3OH)_2(H_2O)_2]_n$, two independent Co^{II} atoms both occupy special positions with $\overline{1}$ site symmetry. Each Co^{II} atom assumes a distorted octahedral coordination geometry. The phthalate anion acts as a bridging ligand and leads to the formation of a zigzag chain running along the *c* axis. $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds connect the chains and result in the formation of a three-dimensional structure.

Related literature

For related crystal structures, see: Baca et al. (2003, 2006).

Experimental

Crystal data $[Co(C_8H_4O_4)(CH_4O)_2(H_2O)_2]$ $M_r = 323.16$ Monoclinic, $P2_1/c$ a = 10.0810 (9) Å b = 9.9429 (9) Å c = 13.2735 (12) Å $\beta = 90.300$ (2)°

 $V = 1330.4 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.32 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.778, T_{\max} = 0.826$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$
$wR(F^2) = 0.133$
S = 1.26
2351 reflections
193 parameters
8 restraints

5378 measured reflections 2351 independent reflections 2172 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

H atoms treated by a mixture o	f
independent and constrained	
refinement	
$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1

Selected bond lengths (Å).

Co1-O1	2.080 (3)	Co2-O3	2.077 (4)
Co1-O5	2.148 (4)	Co2-O7	2.098 (4)
Co1-O6	2.037 (4)	Co2-O8	2.083 (4)

Table 2				
Hydrogen-bond	geometry ((Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H2\cdots O2^{i}$	0.82 (5)	1.75 (6)	2.557 (5)	167 (7)
O7−H1···O5 ⁱⁱ	0.82(5)	2.00 (5)	2.817 (6)	175 (8)
$O6-H6C \cdot \cdot \cdot O4^{i}$	0.85 (5)	1.93 (5)	2.764 (5)	165 (6)
O6−H6D···O3 ⁱⁱⁱ	0.85 (4)	1.85 (4)	2.699 (5)	176 (6)
O8−H8A···O1 ⁱⁱ	0.84 (3)	1.88 (3)	2.716 (5)	170 (6)
$O8-H8B\cdots O4^{iv}$	0.85 (4)	1.94 (5)	2.770 (5)	166 (5)
$C5-H5A\cdots O2^{v}$	0.93	2.49	3.331 (7)	150

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1; (v) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science Foundation of Xinzhou Teachers' University (grant No. 200501).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2201).

References

- Baca, S. G., Filippova, I. G., Gerbeleu, N. V., Simonov, Y. A., Gdaniec, M., Timco, G. A., Gherco, O. A. & Malaestean, Y. L. (2003). *Inorg. Chim. Acta*, 344, 109–116.
- Baca, S. G., Reetz, M. T., Goddard, R., Filippova, I. G., Simonov, Y. A., Gdaniec, M. & Gerbeleu, N. (2006). *Polyhedron*, 25, 1215–1222.
- Bruker (1997). *SMART* (Version 5.6) and *SAINT* (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS (Version 2.10). University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2311 [doi:10.1107/S1600536807038573]

catena-Poly[[diaquabis(methanol)cobalt(II)]-^µ-phthalato]

C.-Q. Liu, X.-T. Yang, L.-L. An, R. Li and J.-M. Shi

Comment

Phthalate anion is a versatile ligand and a large number of multi-nuclear complexes with it as a bridging ligand have been reported (Baca *et al.*, 2003, 2006). Here we report the crystal structure of a novel coordination polymer dealing with phthalate anion, (I).

Fig. 1 shows the asymmetric unit and the symmetry-related fragment of (I). Atoms Co1 and Co2 lie in an inversion centre and are in a distorted octahedral CoO₆ coordination geometry (Table 1). Each phthalate anion as a μ_2 -bridging ligand joins two adjacent Co^{II} atoms with separation of 6.6367 (6) Å and it results in the formation of a zigzag one-dimensional chain along the *c* axis. The overall crystal structure of (I) is a super-molecular three-dimensional network, which attributes to the connection between chains by the O—H…O and C—H…O hydrogen bonds (Table 2 and Fig. 2).

Experimental

A methanol solution (50 ml) containing phthalic acid (3.32 g, 0.02 mol) and cobalt acetate (1.77 g, 0.01 mol) was refluxed for 50 min and the reaction solid was separated and dried. The dried solid (0.2 g) was dissolved in H₂O (20 ml) and pink single crystals were obtained after the solution had been allowed to stand at room temperature for about a month.

Refinement

H atoms of water molecules and hydroxyl groups were located in a difference Fourier map and were refined with distance restraints of O—H = 0.85 (2) Å for water molecules and 0.82 (2) Å for hydroxyl groups, and with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The coordination structure of (I), with the atom numbering scheme and thermal ellipsoids drawn at the 30% probability level [symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1].

Fig. 2. A packing diagram of (I), showing hydrogen bonds (dashed lines).

catena-Poly[[diaquabis(methanol)cobalt(II)]-µ-phthalato]

Crystal data	
[Co(C ₈ H ₄ O ₄)(CH ₄ O) ₂ (H ₂ O) ₂]	$F_{000} = 668$
$M_r = 323.16$	$D_{\rm x} = 1.613 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2648 reflections
a = 10.0810 (9) Å	$\theta = 2.6 - 27.6^{\circ}$
b = 9.9429 (9) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 13.2735 (12) Å	T = 293 (2) K
$\beta = 90.300 \ (2)^{\circ}$	Prism, pink
$V = 1330.4 (2) \text{ Å}^3$	$0.20\times0.20\times0.15~mm$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	2351 independent reflections
Radiation source: fine-focus sealed tube	2172 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 293(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -6 \rightarrow 12$
$T_{\min} = 0.778, T_{\max} = 0.826$	$k = -11 \rightarrow 11$
5378 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.133$	$w = 1/[\sigma^2(F_0^2) + (0.0199P)^2 + 5.7387P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.27	$(\Delta/\sigma)_{max} < 0.001$
2351 reflections	$\Delta \rho_{max} = 0.49 \text{ e } \text{\AA}^{-3}$

193 parameters

 $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$

8 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Co1	0.5000	0.0000	1.0000	0.0270 (3)
Co2	0.5000	0.0000	0.5000	0.0291 (3)
01	0.3636 (3)	0.1108 (3)	0.9162 (3)	0.0247 (8)
O2	0.1792 (4)	-0.0057 (4)	0.9467 (3)	0.0421 (10)
O3	0.4035 (4)	0.1133 (4)	0.6087 (3)	0.0316 (9)
O4	0.3505 (4)	-0.0417 (3)	0.7224 (3)	0.0304 (9)
05	0.6557 (4)	0.1154 (4)	0.9317 (3)	0.0352 (9)
H2	0.717 (5)	0.087 (7)	0.966 (4)	0.053*
O6	0.5027 (5)	0.1347 (4)	1.1156 (3)	0.0374 (10)
H6C	0.553 (5)	0.120 (6)	1.166 (3)	0.056*
H6D	0.471 (6)	0.214 (3)	1.117 (4)	0.056*
07	0.6667 (4)	0.1246 (4)	0.5157 (4)	0.0459 (11)
H1	0.661 (8)	0.198 (4)	0.488 (5)	0.069*
08	0.4320 (4)	0.1280 (4)	0.3867 (3)	0.0343 (10)
H8A	0.412 (6)	0.210 (3)	0.388 (5)	0.051*
H8B	0.499 (4)	0.115 (5)	0.349 (4)	0.051*
C1	0.2433 (5)	0.0782 (5)	0.8981 (4)	0.0250 (12)
C2	0.1755 (5)	0.1554 (5)	0.8149 (4)	0.0273 (12)
C3	0.0660 (6)	0.2309 (6)	0.8391 (5)	0.0417 (15)
H3A	0.0314	0.2250	0.9037	0.050*
C4	0.0059 (6)	0.3155 (7)	0.7695 (5)	0.0482 (18)
H4A	-0.0682	0.3658	0.7871	0.058*
C5	0.0578 (6)	0.3241 (6)	0.6739 (5)	0.0460 (17)
H5A	0.0200	0.3822	0.6270	0.055*
C6	0.1661 (6)	0.2462 (6)	0.6475 (5)	0.0400 (14)
H6B	0.1996	0.2512	0.5825	0.048*
C7	0.2251 (5)	0.1606 (5)	0.7175 (4)	0.0267 (12)
C8	0.3358 (5)	0.0702 (5)	0.6825 (4)	0.0236 (12)
C9	0.6831 (7)	0.1107 (7)	0.8252 (5)	0.0537 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9A	0.7566	0.1687	0.8104	0.080*
H9B	0.6064	0.1400	0.7882	0.080*
H9C	0.7047	0.0202	0.8062	0.080*
C10	0.7954 (9)	0.0949 (10)	0.5518 (8)	0.098 (4)
H10A	0.8493	0.1743	0.5489	0.147*
H10B	0.8341	0.0259	0.5108	0.147*
H10C	0.7902	0.0642	0.6202	0.147*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0288 (6)	0.0185 (5)	0.0336 (6)	-0.0006 (5)	-0.0035 (4)	0.0013 (5)
Co2	0.0353 (6)	0.0198 (5)	0.0321 (6)	0.0021 (5)	0.0001 (5)	-0.0005 (5)
01	0.0189 (19)	0.0197 (18)	0.035 (2)	-0.0017 (15)	-0.0050 (15)	0.0037 (16)
02	0.037 (2)	0.043 (2)	0.045 (2)	-0.012 (2)	-0.0051 (19)	0.015 (2)
03	0.044 (2)	0.0190 (19)	0.032 (2)	0.0042 (18)	0.0052 (18)	-0.0024 (16)
04	0.051 (3)	0.0164 (19)	0.0236 (19)	0.0067 (17)	0.0021 (18)	0.0000 (15)
05	0.032 (2)	0.034 (2)	0.040 (2)	-0.0033 (19)	-0.0020 (18)	0.0073 (19)
06	0.055 (3)	0.022 (2)	0.035 (2)	0.011 (2)	-0.011 (2)	-0.0040 (18)
07	0.039 (3)	0.022 (2)	0.076 (3)	-0.002 (2)	-0.011 (2)	0.005 (2)
08	0.041 (3)	0.023 (2)	0.038 (2)	0.0115 (19)	0.0017 (19)	0.0029 (18)
C1	0.029 (3)	0.021 (3)	0.025 (3)	0.002 (2)	-0.002 (2)	-0.004 (2)
C2	0.023 (3)	0.024 (3)	0.035 (3)	0.000 (2)	-0.003 (2)	-0.003 (2)
C3	0.032 (3)	0.046 (4)	0.046 (4)	0.013 (3)	0.003 (3)	-0.002 (3)
C4	0.032 (3)	0.050 (4)	0.063 (5)	0.021 (3)	-0.002 (3)	-0.005 (3)
C5	0.043 (4)	0.038 (4)	0.057 (4)	0.011 (3)	-0.012 (3)	0.010 (3)
C6	0.042 (4)	0.034 (3)	0.043 (3)	0.002 (3)	-0.005 (3)	0.009 (3)
C7	0.026 (3)	0.017 (3)	0.037 (3)	-0.001 (2)	-0.002 (2)	-0.002 (2)
C8	0.037 (3)	0.019 (3)	0.014 (2)	-0.001 (2)	-0.007 (2)	0.004 (2)
C9	0.057 (5)	0.037 (4)	0.067 (5)	-0.002 (3)	0.008 (4)	0.009 (4)
C10	0.074 (6)	0.102 (8)	0.118 (8)	-0.039 (6)	-0.034 (6)	0.048 (7)

Geometric parameters (Å, °)

Co1—O1 ⁱ	2.080 (3)	O7—H1	0.82 (5)
Co1—O1	2.080 (3)	O8—H8A	0.84 (3)
Co1—O5 ⁱ	2.148 (4)	O8—H8B	0.85 (4)
Co1—O5	2.148 (4)	C1—C2	1.506 (7)
Co1—O6	2.037 (4)	C2—C3	1.374 (8)
Co1—O6 ⁱ	2.037 (4)	C2—C7	1.389 (8)
Co2—O3	2.077 (4)	C3—C4	1.386 (9)
Co2—O3 ⁱⁱ	2.077 (4)	С3—НЗА	0.9300
Co2—O7	2.098 (4)	C4—C5	1.377 (9)
Co2—O7 ⁱⁱ	2.098 (4)	C4—H4A	0.9300
Co2—O8 ⁱⁱ	2.083 (4)	C5—C6	1.385 (9)
Co2—O8	2.083 (4)	С5—Н5А	0.9300
O1—C1	1.277 (6)	C6—C7	1.392 (8)

O2—C1	1.239 (6)	С6—Н6В	0.9300
O3—C8	1.271 (6)	С7—С8	1.508 (7)
O4—C8	1.240 (6)	С9—Н9А	0.9600
О5—С9	1.443 (8)	С9—Н9В	0.9600
O5—H2	0.82 (5)	С9—Н9С	0.9600
O6—H6C	0.85 (4)	C10—H10A	0.9600
O6—H6D	0.85 (5)	C10—H10B	0.9600
O7—C10	1.411 (9)	C10—H10C	0.9600
06—Co1—O6 ⁱ	180.000 (1)	Со2—О7—Н1	115 (5)
06—Co1—O1 ⁱ	86.52 (15)	Co2—O8—H8A	131 (4)
$O6^{i}$ —Co1—O1 ⁱ	93.48 (15)	Co2—O8—H8B	94 (4)
O6—Co1—O1	93.48 (15)	H8A—O8—H8B	110 (3)
O6 ⁱ —Co1—O1	86.52 (15)	O2—C1—O1	124.8 (5)
01 ⁱ —Co1—O1	180.000 (1)	O2—C1—C2	119.3 (5)
06—Co1—O5 ⁱ	92.29 (17)	01—C1—C2	115.8 (5)
O6 ⁱ —Co1—O5 ⁱ	87.71 (17)	C3—C2—C7	119.4 (5)
Ol ⁱ —Col—O5 ⁱ	88.50 (14)	C3—C2—C1	118.0 (5)
O1—Co1—O5 ⁱ	91.50 (14)	C7—C2—C1	122.4 (5)
O6—Co1—O5	87.71 (17)	C2—C3—C4	121.6 (6)
O6 ⁱ —Co1—O5	92.29 (17)	С2—С3—Н3А	119.2
O1 ⁱ —Co1—O5	91.50 (14)	С4—С3—НЗА	119.2
O1—Co1—O5	88.50 (14)	C5—C4—C3	119.0 (6)
O5 ⁱ —Co1—O5	180.0	C5—C4—H4A	120.5
O3—Co2—O3 ⁱⁱ	180.00 (14)	C3—C4—H4A	120.5
O3—Co2—O8 ⁱⁱ	89.05 (15)	C4—C5—C6	120.2 (6)
O3 ⁱⁱ —Co2—O8 ⁱⁱ	90.95 (15)	C4—C5—H5A	119.9
O3—Co2—O8	90.95 (15)	С6—С5—Н5А	119.9
O3 ⁱⁱ —Co2—O8	89.05 (15)	C5—C6—C7	120.5 (6)
O8 ⁱⁱ —Co2—O8	180.00 (15)	С5—С6—Н6В	119.8
O3—Co2—O7	89.33 (17)	С7—С6—Н6В	119.8
O3 ⁱⁱ —Co2—O7	90.67 (17)	C2—C7—C6	119.3 (5)
O8 ⁱⁱ —Co2—O7	91.63 (17)	C2—C7—C8	122.4 (5)
O8—Co2—O7	88.37 (17)	C6—C7—C8	118.2 (5)
O3—Co2—O7 ⁱⁱ	90.67 (17)	O4—C8—O3	124.6 (5)
O3 ⁱⁱ —Co2—O7 ⁱⁱ	89.33 (17)	O4—C8—C7	119.3 (5)
O8 ⁱⁱ —Co2—O7 ⁱⁱ	88.37 (17)	O3—C8—C7	115.9 (4)
08—Co2—O7 ⁱⁱ	91.63 (17)	О5—С9—Н9А	109.5
O7—Co2—O7 ⁱⁱ	180.00 (18)	О5—С9—Н9В	109.5
C1—O1—Co1	126.2 (3)	Н9А—С9—Н9В	109.5
C8—O3—Co2	127.4 (3)	О5—С9—Н9С	109.5
C9—O5—Co1	122.7 (4)	Н9А—С9—Н9С	109.5
C9—O5—H2	113 (5)	Н9В—С9—Н9С	109.5
Co1—O5—H2	98 (5)	07—C10—H10A	109.5
Co1—O6—H6C	119 (4)	O7—C10—H10B	109.5

supplementary materials

Co1—O6—H6D	128 (4)	H10A—C10—H10B	109.5
H6C—O6—H6D	112 (3)	O7—C10—H10C	109.5
С10—О7—Со2	130.1 (5)	H10A—C10—H10C	109.5
С10—О7—Н1	114 (6)	H10B-C10-H10C	109.5
O6—Co1—O1—C1	-110.5 (4)	O2—C1—C2—C7	-126.5 (6)
O6 ⁱ —Co1—O1—C1	69.5 (4)	O1—C1—C2—C7	56.9 (7)
O5 ⁱ —Co1—O1—C1	-18.1 (4)	C7—C2—C3—C4	-2.0 (9)
O5—Co1—O1—C1	161.9 (4)	C1—C2—C3—C4	173.3 (6)
O8 ⁱⁱ —Co2—O3—C8	-43.5 (4)	C2—C3—C4—C5	-0.1 (10)
O8—Co2—O3—C8	136.5 (4)	C3—C4—C5—C6	1.7 (10)
O7—Co2—O3—C8	-135.1 (4)	C4—C5—C6—C7	-1.2 (10)
O7 ⁱⁱ —Co2—O3—C8	44.9 (4)	C3—C2—C7—C6	2.6 (8)
O6—Co1—O5—C9	-158.0 (4)	C1—C2—C7—C6	-172.6 (5)
O6 ⁱ —Co1—O5—C9	22.0 (4)	C3—C2—C7—C8	-173.6 (5)
O1 ⁱ —Co1—O5—C9	115.6 (4)	C1—C2—C7—C8	11.3 (8)
O1—Co1—O5—C9	-64.4 (4)	C5—C6—C7—C2	-1.0 (9)
O3—Co2—O7—C10	114.6 (7)	C5—C6—C7—C8	175.3 (5)
O3 ⁱⁱ —Co2—O7—C10	-65.4 (7)	Co2—O3—C8—O4	25.4 (7)
O8 ⁱⁱ —Co2—O7—C10	25.6 (7)	Co2—O3—C8—C7	-150.5 (4)
O8—Co2—O7—C10	-154.4 (7)	C2—C7—C8—O4	28.2 (8)
Co1—O1—C1—O2	18.8 (8)	C6—C7—C8—O4	-148.0 (5)
Co1—O1—C1—C2	-164.9 (3)	C2—C7—C8—O3	-155.7 (5)
O2—C1—C2—C3	58.3 (7)	C6—C7—C8—O3	28.1 (7)
O1—C1—C2—C3	-118.3 (6)		

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H2···O2 ⁱ	0.82 (5)	1.75 (6)	2.557 (5)	167 (7)
O7—H1···O5 ⁱⁱⁱ	0.82 (5)	2.00 (5)	2.817 (6)	175 (8)
O6—H6C····O4 ⁱ	0.85 (5)	1.93 (5)	2.764 (5)	165 (6)
O6—H6D···O3 ^{iv}	0.85 (4)	1.85 (4)	2.699 (5)	176 (6)
O8—H8A···O1 ⁱⁱⁱ	0.84 (3)	1.88 (3)	2.716 (5)	170 (6)
O8—H8B····O4 ⁱⁱ	0.85 (4)	1.94 (5)	2.770 (5)	166 (5)
C5—H5A…O2 ^v	0.93	2.49	3.331 (7)	150
Symmetry codes: (i) $-x+1, -y, -z+2$; (iii) $x, -y+1$	1/2, z-1/2; (iv) $x, -y$	x+1/2, $z+1/2$; (ii) $-x+1/2$; (iii) $-x+1/2$; (ii) $-x+1/2$; (iii) $-x+1/2$; (ii) $-x+1/2$; (ii) $-x+1/2$; (ii) $-$	1, -y, -z+1; (v) -x, y	+1/2, -z+3/2.

